Lunar Settlement

From Lunarpedia
Revision as of 18:59, 9 November 2010 by Jotagiraldez (talk | contribs)
Jump to: navigation, search

A moon colony, or lunar settlement, is a proposed establishment of human settelements in or on the moon's surface. Habitation of lunar land could potentially benefit Earth. Some examples include bountiful solar power, solving overpopulation, and elements such as Helium-3 to drive a pending fusion economy. Here, staging areas could also be constructed to launch future missions to Mars.


Placing a colony on a natural body would provide an ample source of material for construction and other uses, including shielding from radiation. The energy required to send objects from the Moon to space is much less than from Earth to space. This could allow the Moon to serve as a construction site or fueling station for spacecraft. Some proposals include using electric acceleration devices (mass drivers) to propel objects off the Moon without building rockets. Others have proposed momentum exchange tethers (see below). Furthermore, the Moon does have some gravity, which experience to date indicates may be vital for fetal development and long-term human health.[1] Whether the Moon's gravity (roughly one sixth of Earth's) is adequate for this purpose, however, is uncertain.

In addition, the Moon is the closest large body in the solar system to Earth. While some Earth-crosser asteroids occasionally pass closer, the Moon's distance is consistently within a small range close to 384,400 km. This proximity has several benefits:

Monetary (including space tourism), security, and technological gains. The energy required to send objects from Earth to the Moon is lower than for most other bodies. Transit time is short. The Apollo astronauts made the trip in three days and future technologies could improve on this time. If the Moon were colonized then it could be tested if humans can survive in low gravity. Those results could be utilized for a viable Mars colony as well. The short transit time would also allow emergency supplies to quickly reach a Moon colony from Earth, or allow a human crew to evacuate relatively quickly from the Moon to Earth in case of emergency. This could be an important consideration when establishing the first human colony.

Wikiversity has learning materials about Lunar Boom Town

The round trip communication delay to Earth is less than three seconds, allowing near-normal voice and video conversation, and allowing some kinds of remote control of machines from Earth that are not possible for any other celestial body. The delay for other solar system bodies is minutes or hours; for example, round trip communication time between Earth and Mars ranges from about eight minutes to about forty minutes. This again would be of particular value in an early colony, where life-threatening problems requiring Earth's assistance could occur. (See, for example, Apollo 13.) On the Lunar near side, the Earth appears large and is always visible as an object 60 times brighter than the Moon appears from Earth, unlike more distant locations where the Earth would be seen merely as a star-like object, much as the planets appear from Earth. As a result, a Lunar colony might feel less remote to humans living there. A Lunar base would provide an excellent site for any kind of observatory.[2] Particular advantages arise from building observatory facilities on the Moon from Lunar materials. As the Moon's rotation is so slow, visible light observatories could perform observations for days at a time. It is possible to maintain near-constant observations on a specific target with a string of such observatories spanning the circumference of the Moon. The fact that the Moon is geologically inactive along with the lack of widespread human activity results in a remarkable lack of mechanical disturbance, making it far easier to set up interferometric telescopes on the Lunar surface, even at relatively high frequencies such as visible light. A Lunar base could also hold a future site for launching rockets, to distant planets such as Mars. Launching rockets from the Moon would be an easier prospect than on Earth due to the Moon's lower gravity requiring a lower escape velocity. A lower escape velocity would require less propellant, and so less money is required. A farm at the Lunar North Pole could provide eight hours of sunlight per day for rotating crops, a beneficial temperature, radiation protection, insects for pollination, and all other plant needs artificially during the local summer for a cost. One estimate suggested a 0.5 hectare space farm could feed 100 people.[3] A moon colony provides us with most of the experiments, skills, and knowledge we need to colonize another planet.[citation needed] A moon colony can easily be seen from the Earth, and might inspire many more humans to seriously consider the advantages and future of colonization. A clear sign or signal can be made to remind humans on Earth, inspiring future leaders, astronauts, and scientists. Assuming it feasible and the medical issues of low gravity is solved, there are many compelling reasons to found a society in and on the lunar surface in the short term, rather than other bodies of our solar system. These include:

  • The Moon has low escape velocity. So if electrical launch from Moon to orbit is achieved, it would cost less to ship materials from the Moon to space or Earth than it would cost to ship materials from Mars. This exportation of lunar material to other places could pay off the large investment required for a functional, human/robot colony. This trade would benefit other places in need of moon material. (Furthering the income)
  • There is a small, time lapse in Earth to Moon communication, nearly three seconds round trip communications delay. In the case of life threatening scenarios, humans on Earth would have more time to address the problem and send evacuation craft, increasing the probability of the colonist's survival. No other celestial body has such a dependably short communications delay.
  • Because of the lack of atmosphere, combined with extremely slow rotations, sunlight could be harvested with virtually no intereference at the poles. The poles location also serves as a superb observation point to explore astronomical objects for days at a time.
  • The moon's regolith is rich in elements, both rare and common. Oxygen, titanium, silicon, ..., ..., and traces of hydrogen are to name a few.
  • Gazing at the moon serves somewhat of a psychological benefit to humans on Earth, which could temorarily gain polictal support for expansion, at least until bases on extra-terrestrial planets become common.


In order to create a thriving civilization, one must gain the support of the general public to pay for expense for importing matter etc.

Designs and Ideas

The 1950's science fiction ideas of geodistic domes and sheild generatators to solve both radiation and atmospheric requirements will be inadequate.

Difficulties to Solve

  • If no electrical launch of material from the Moon to orbit is achieved, the cost of importing hydrogen and carbon for rocket fuel would make exporting material from the Moon more expensive than exporting material from Mars.
  • Industrial processes to recover volatiles on the Moon will require the use of pressure vessels and air-locks. Air-lock doors require gaskets. Rubber and silicone used as gasket material on Earth require both hydrogen and carbon. Either sources of these materials which are scarce on the Moon must be found or a substitute material such as lead must be used. There is some doubt if there are any available sources of lead on the Moon.
  • The highest concentrations of hydrogen so far detected on the Moon are estimated to be equivalent to about 1% ice by weight. [4] These concentrations of hydrogen are only found in the permanently shadowed bottoms of some craters in the polar regions of the Moon. The scarcity of hydrogen and the darkness and low temperatures where it is found combine to make the probable future cost of hydrogen on the Moon quite high, and there can be no colony without hydrogen.

See also