Difference between revisions of "Iron"
(new test -- imported, not copied and pasted) |
|||
(17 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
− | # | + | {{Element | |
+ | name=Iron | | ||
+ | symbol=Fe | | ||
+ | available=abundant | | ||
+ | need=essential | | ||
+ | number=26 | | ||
+ | mass=55.845 | | ||
+ | group=8 | | ||
+ | period=4 | | ||
+ | phase=Solid | | ||
+ | series=Transition Metals | | ||
+ | density=7.86 g/cm3 | | ||
+ | melts=1811K,<BR/>1538°C,<BR/>2800°F | | ||
+ | boils=3134K,<BR/>2861°C,<BR/>5182°F | | ||
+ | isotopes=54<BR/>56<BR/>57<BR/>58 | | ||
+ | prior=[[Manganese|<FONT color="#7F7FFF">Mn</FONT>]] | | ||
+ | next=[[Cobalt|<FONT color="#7F7FFF">Co</FONT>]] | | ||
+ | above=<SMALL><FONT color="#7F7F7F">N/A</FONT></SMALL> | | ||
+ | aprior=<SMALL><FONT color="#7F7F7F">N/A</FONT></SMALL> | | ||
+ | anext=<SMALL><FONT color="#7F7F7F">N/A</FONT></SMALL> | | ||
+ | below=[[Ruthenium|<FONT color="#7F7FFF">Ru</FONT>]] | | ||
+ | bprior=[[Technetium|<FONT color="#7F7FFF">Tc</FONT>]] | | ||
+ | bnext=[[Rhodium|<FONT color="#7F7FFF">Rh</FONT>]] | | ||
+ | radius=140 | | ||
+ | bohr=156 | | ||
+ | covalent=125 | | ||
+ | vdwr= | | ||
+ | irad=(+3) 55 | | ||
+ | ipot=7.90 | | ||
+ | econfig=1s<sup>2</sup> <br/>2s<sup>2</sup> 2p<sup>6</sup> <br/>3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>6</sup> <br/>4s<sup>2</sup> | | ||
+ | eshell=2, 8, 14, 2 | | ||
+ | enega=1.83 | | ||
+ | eaffin=0.15 | | ||
+ | oxstat=2, '''3''' | | ||
+ | magn=Ferromagnetic | | ||
+ | cryst=Body centered cubic | | ||
+ | }} | ||
+ | '''Iron''' is a Transition Metal in group 8. | ||
+ | It has a Body centered cubic crystalline structure. | ||
+ | This [[Periodic Table of the Elements|element]] has 4 stable isotopes: 54, 56, 57, and 58. | ||
+ | <BR /><BR /> | ||
+ | |||
+ | ==Lunar Iron Use/Production== | ||
+ | Lunar iron is present both in metallic form and as oxides. Metallic iron is found virtually everywhere on the moon, alloyed with nickel in tiny particles dispersed in the regolith, the remnants of pulverized nickel-iron meteorites. Iron oxides are found predominately on the [[maria]], where they can make up nearly 15% of the regolith by weight. Due to this abundance of both free iron and iron oxides, as well as the fact that iron oxides require less energy to reduce than any other oxide found in the lunar surface, iron is considered to be the easiest metal to obtain on Luna. | ||
+ | |||
+ | Due to this ease of acquirement, lunar iron could become a workhorse metal for lunar construction. Iron could be alloyed with [[carbon]] extracted from the lunar regolith to produce steel. Other important alloying elements include [[titanium]], [[chromium]], [[nickel]], and [[manganese]], all of which are available from lunar sources. | ||
+ | |||
+ | Metallic iron is strongly attracted to magnetic fields, and can be easily [[Iron Beneficiation|separated from the lunar regolith]] by magnetic processes. Many iron oxides can also be extracted from the regolith using magnetic separation, including [[Ilmenite]](Fe[[Titanium|Ti]][[Oxygen|O]]<sub>3</sub>), hematite (Fe<sub>2</sub>[[Oxygen|O]]<sub>3</sub>), and magnetite (Fe[[Oxygen|O]].Fe<sub>2</sub>[[Oxygen|O]]<sub>3</sub>). These oxides generally have much weaker attraction to magnetic fields than metallic iron, enabling separation of the two after gathering. | ||
+ | |||
+ | |||
+ | ==Related Article== | ||
+ | |||
+ | *[[Iron Beneficiation]] | ||
+ | *[[Lunar Titanium Production]] | ||
+ | *[[Ilmenite Reduction]] | ||
+ | |||
+ | ==External Links== | ||
+ | |||
+ | *[http://lunar.arc.nasa.gov/results/gamres.htm Lunar Prospector: Gamma Ray Spectrometer Results] | ||
+ | |||
+ | [[Category:Ferromagnetic Elements]] | ||
+ | [[Category:Solids]] | ||
+ | [[Category:Transition Metals ]] | ||
+ | [[Category:Critical and Essential Elements]] | ||
+ | [[Category:Abundant Elements]] | ||
+ | <!-- Generated by a gamma candidate version of Autostub2 (Test 9) --> |
Latest revision as of 06:55, 20 January 2021
Iron | |
---|---|
Fe | |
In situ availability: | abundant |
Necessity: | essential |
Atomic number: | 26 |
Atomic mass: | 55.845 |
group: | 8 |
period: | 4 |
normal phase: | Solid |
series: | Transition Metals |
density: | 7.86 g/cm3 |
melting point: | 1811K, 1538°C, 2800°F |
boiling point: | 3134K, 2861°C, 5182°F |
N/A ← N/A → N/A | |
Mn ← Fe → Co | |
Tc ← Ru → Rh | |
Atomic radius (pm): | 140 |
Bohr radius (pm): | 156 |
Covalent radius (pm): | 125 |
Van der Waals radius (pm): | |
ionic radius (pm): | (+3) 55 |
1st ion potential (eV): | 7.90 |
Electron Configuration | |
1s2 2s2 2p6 3s2 3p6 3d6 4s2 | |
Electrons Per Shell | |
2, 8, 14, 2 | |
Electronegativity: | 1.83 |
Electron Affinity: | 0.15 |
Oxidation states: | 2, 3 |
Magnetism: | Ferromagnetic |
Crystal structure: | Body centered cubic |
Iron is a Transition Metal in group 8.
It has a Body centered cubic crystalline structure.
This element has 4 stable isotopes: 54, 56, 57, and 58.
Lunar Iron Use/Production
Lunar iron is present both in metallic form and as oxides. Metallic iron is found virtually everywhere on the moon, alloyed with nickel in tiny particles dispersed in the regolith, the remnants of pulverized nickel-iron meteorites. Iron oxides are found predominately on the maria, where they can make up nearly 15% of the regolith by weight. Due to this abundance of both free iron and iron oxides, as well as the fact that iron oxides require less energy to reduce than any other oxide found in the lunar surface, iron is considered to be the easiest metal to obtain on Luna.
Due to this ease of acquirement, lunar iron could become a workhorse metal for lunar construction. Iron could be alloyed with carbon extracted from the lunar regolith to produce steel. Other important alloying elements include titanium, chromium, nickel, and manganese, all of which are available from lunar sources.
Metallic iron is strongly attracted to magnetic fields, and can be easily separated from the lunar regolith by magnetic processes. Many iron oxides can also be extracted from the regolith using magnetic separation, including Ilmenite(FeTiO3), hematite (Fe2O3), and magnetite (FeO.Fe2O3). These oxides generally have much weaker attraction to magnetic fields than metallic iron, enabling separation of the two after gathering.