Difference between revisions of "Ilmenite Reduction"
Line 17: | Line 17: | ||
<BR>Where n represents the number of TiO<sub>2</sub> molecules | <BR>Where n represents the number of TiO<sub>2</sub> molecules | ||
− | + | Call me wind because I am absoullety blown away. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Methane Reduction== | ==Methane Reduction== |
Revision as of 05:38, 27 October 2011
Contents
Introduction
Reducing ilmenite (FeTiO3) to produce oxygen, iron, and titanium in a lunar context has produced a number of proposals, many of them specifically aimed at oxygen production. Ilmenite is attractive for this purpose as the iron oxides it contains require less energy to reduce than any other oxide on the lunar surface. For this reason, proposals which have oxygen production as the primary goal usually focus on reduction of the iron content of ilmenite.
This is exactly what I was lokiong for. Thanks for writing!
Carbothermal Reduction
Oxygen can be retrieved from Ilmenite (FeTiO3) and Rutile (TiO2) by means of carbothermal reduction. In experiments, powdered carbon and powdered ilmenite/rutile were evenly mixed and then heated to 1500 degrees Celsius. The end products of this reaction are Oxygen and a high strength Ceramic-metal composite (Cermet) of Iron (Fe) and Titanium Carbide (TiC) which has high chemical stability. The amount of reinforcing TiC ceramic in the matrix can be controlled via the amount of rutile and carbon used[1]. While this method provides a means of retrieving all of the oxygen from ilmenite/rutile and a potential for producing reinforced, high performance and wear components and cutting tools from lunar regolith, it is at the cost of highly valuable carbon needed for biological processes.
Stoichiometry for this reaction:
Ilmenite:
FeTiO3 + 4C ---->Fe + TiC + 3CO
Ilmenite and Rutile:
FeTiO3 + nTiO2 + (4+3n)C ---->Fe + (1+n)TiC + (3+2n)CO
Where n represents the number of TiO2 molecules
Call me wind because I am absoullety blown away.
Methane Reduction
Please note: Methane Reduction This section is a placeholder for work currently in progress. |
Li or Na Reduction
Plasma Reduction
Electrolytic Reduction
If your aritcels are always this helpful, I'll be back.
Related Pages
External Links
- ISRU on the Moon. by Larry Taylor http://www.lpi.usra.edu/lunar_knowledge/LTaylor.pdf
- Extraction Techniques-Oxygen. G. L. Kulcinski, February 18, 2004 http://fti.neep.wisc.edu/neep533/SPRING2004/lecture13.pdf
- Processing Lunar Soils for Oxygen and Other Materials. Knudsen & Gibson http://nss.org/settlement/nasa/spaceresvol3/plsoom1.htm
- Lunar Oxygen Production - A Maturing Technology
- The Effect of TiO2 on Synthesizing Fe-TiC Composites
- Resources of Near-Earth Space. Univ. of Arizona Press