Talk:Electrical Conductors
Element | Resistivity @ 20°C | Density (~ r.t.) | Availability | Highland | Lowland |
Silver | 15.87 nΩ·m | 10.490 g·cm−3 | Unknown | Unknown | Unknown |
Copper | 16.78 nΩ·m | 8.960 g·cm−3 | Unknown | Unknown | Unknown |
Gold | 22.14 nΩ·m | 19.300 g·cm−3 | Unknown | Unknown | Unknown |
Aluminum | 26.50 nΩ·m | 2.700 g·cm−3 | Yes | 133,000 | 69,700 |
Magnesium | 43.90 nΩ·m | 1.738 g·cm−3 | Yes | 45,500 | 57,600 |
Sodium | 47.70 nΩ·m | 0.968 g·cm−3 | Yes | 3,100 | 2,900 |
Iron | 96.10 nΩ·m | 7.150 g·cm−3 | Yes | 48,700 | 132,000 |
Chromium | 125.00 nΩ·m | 7.860 g·cm−3 | Yes | 850 | 2,600 |
Titanium | 420.00 nΩ·m | 4.506 g·cm−3 | Yes | 3,100 | 31,000 |
Manganese | 1440.00 nΩ·m | 7.210 g·cm−3 | Yes | 675 | 1,700 |
Lower # => better | r.t. = room temperature | ppm by weight | ppm by weight |
Thinking Moon
The Sodium entry is a good example of thinking Moon. That is, looking at ideas that are insignificant when used on Earth but could really save the day when used on the Moon. It does take a rather long scenario to show how Sodium could be used, but this is part of the process needed to compare complicated technical ideas.
--Jriley 13:25, 11 May 2007 (UTC)
Sodium Abundance
Having looked around I'm only seeing Sodium in the 3k ppm range or listed in compounds that have % occurrences of ~0.5%. Could you cite your sources supporting said abundance of Sodium? -- Mdelaney 19:17, 11 May 2007 (UTC)