Sulfur
| Sulfur | |
|---|---|
| S | |
| In situ availability: | good |
| Necessity: | |
| Atomic number: | 16 |
| Atomic mass: | 32.066 |
| group: | 16 |
| period: | 3 |
| normal phase: | Solid |
| series: | Non-metals |
| density: | (alpha) 2.07 g/cm3 (beta) 1.96 g/cm3 |
| melting point: | 388.36K, 115.21°C, 239.38°F |
| boiling point: | 717.8K, 444.6°C, 832.3°F |
| N ← O → F | |
| P ← S → Cl | |
| As ← Se → Br | |
| Atomic radius (pm): | 100 |
| Bohr radius (pm): | 88 |
| Covalent radius (pm): | 102 |
| Van der Waals radius (pm): | 180 |
| ionic radius (pm): | (-2) 184 |
| 1st ion potential (eV): | 10.36 |
| Electron Configuration | |
| 1s2 2s2 2p6 3s2 3p4 | |
| Electrons Per Shell | |
| 2, 8, 6 | |
| Electronegativity: | 2.58 |
| Electron Affinity: | 2.08 |
| Oxidation states: | +/-2, 4, 6 |
| Magnetism: | ? |
| Crystal structure: | Orthorhombic |
Sulfur is a Non-metal in group 16.
It has a Orthorhombic crystalline structure.
This element has 4 stable isotopes: 32, 33, 34, and 36.
Sulfur is availible in lunar soil in significant quantities, principally in the form of troilite (FeS), comprising around 1% of the lunar crust[1]. In addition, concentrated veins of troilite have been found in some lunar rocks, and it has been suggested that larger deposits of the mineral may exist[2].
Troilite is non-magnetic when its crystal structure is complete. However, it is commonly associated with native iron in the lunar regolith. As such, magnetic gathering of iron fines could produce a significant amount of troilite as a byproduct. Troilite may also be separable from the lunar regolith by a combination of mechanical sifting and electrostatic beneficiation.
Several uses have been proposed for lunar sulfur, including rocket propellant, production of sulfuric acid for industrial processes, lunar concrete, and sealants[3].
References





