Difference between revisions of "Aluminum"
Jotagiraldez (talk | contribs) |
|||
(21 intermediate revisions by 4 users not shown) | |||
Line 36: | Line 36: | ||
cryst=Face centered cubic | | cryst=Face centered cubic | | ||
}} | }} | ||
− | ''' | + | '''Aluminum''' (British usage '''Aluminium''') is a Poor Metal in group 13. |
It has a Face centered cubic crystalline structure. | It has a Face centered cubic crystalline structure. | ||
− | This element has a stable isotope of 27 | + | This [[Periodic Table of the Elements|element]] has a stable isotope of 27 |
− | |||
− | |||
− | |||
− | |||
+ | "Aluminum is a comparatively new industrial metal that has been produced in commercial quantities for just over 100 years. It weighs about one-third as much as steel or copper; is malleable, ductile, and easily machined and cast; and has excellent corrosion resistance and durability. Measured either in quantity or value, aluminum's use exceeds that of any other metal except iron, and it is important in virtually all segments of the world economy. Some of the many uses for aluminum are in transportation (automobiles, airplanes, trucks, railcars, marine vessels, etc.), packaging (cans, foil, etc.), construction (windows, doors, siding, etc), consumer durables (appliances, cooking utensils, etc.), electrical transmission lines, machinery, and many other applications."- USGS Aluminum Statistics and Information. <ref>http://minerals.usgs.gov/minerals/pubs/commodity/aluminum/</ref> | ||
− | == Lunar | + | ==Lunar use== |
− | + | Since there is no evidence of any substantial deposits of copper ore on Luna, substitutes for [[electrical conductor|electrical wiring]] will be required. Aluminum makes an excellent substitute, being currently used for this purpose in many terrestrial applications. Aluminum is also useful in construction of mirrors for solar collection and reflective coatings for spacecraft, as aluminum is an excellent reflector of both visible and infrared light. Aluminum's high thermal conductivity and corrosion resistance make it useful for the production of heat sinks and heat exchangers, and its high strength and low density make it useful for the production of lightweight components for spacecraft, satellites, and lunar structures. | |
+ | |||
+ | One difficulty in using aluminum on the Moon is its large increase in length with increasing temperature. The large range of day/night temperatures make this particularly important. Aluminum components in a lunar environment would need to be thermally protected to avoid these effects.<ref>http://www.permanent.com/l-minera.htm#aluminum</ref> Another difficulty in the use of aluminum is that aluminum alloys lack a well defined fatigue limit, meaning they will eventually fail from even small stresses given sufficient time. It is for this reason that [[titanium]] is generally favored over aluminum for lightweight load bearing components in terrestrial applications, aluminum being reserved for other, less stressed components. | ||
+ | |||
+ | Aluminum can also be used in locally produced rocket fuel. See [[In-Situ Propellant Production]]. | ||
+ | |||
+ | ==Lunar Aluminum Production== | ||
− | + | Main article: [[Lunar Aluminum Production|Lunar Aluminum Production]] | |
− | + | ''<small>'' | |
− | + | Lunar Aluminum Production could use an adaptation of the Hall-Héroult or Deville process. Alternatives include ion-sputtering, carbothermal reduction, or an adaptation of the [[FFC Cambridge Process]]. | |
− | |||
− | == See Also == | + | ==See Also== |
− | [[ | + | [[Electrical Conductors]] |
+ | [[Lunar Aluminium Production|Lunar Aluminum Production]] | ||
− | == References == | + | ==References== |
− | <references/> | + | <references /> |
Line 72: | Line 75: | ||
[[Category:Poor Metals ]] | [[Category:Poor Metals ]] | ||
[[Category:Abundant Elements]] | [[Category:Abundant Elements]] | ||
− | |||
<!-- Generated by a gamma candidate version of Autostub2 (Test 9) --> | <!-- Generated by a gamma candidate version of Autostub2 (Test 9) --> |
Latest revision as of 06:57, 20 January 2021
Aluminum | |
---|---|
Al | |
In situ availability: | abundant |
Necessity: | useful |
Atomic number: | 13 |
Atomic mass: | 26.981538 |
group: | 13 |
period: | 3 |
normal phase: | Solid |
series: | Poor Metals |
density: | 2.70 g/cm3 |
melting point: | 933.47K, 660.32°C, 1220.58°F |
boiling point: | 2792K, 2519°C, 4566°F |
N/A ← B → C | |
Mg ← Al → Si | |
Zn ← Ga → Ge | |
Atomic radius (pm): | 125 |
Bohr radius (pm): | 118 |
Covalent radius (pm): | 118 |
Van der Waals radius (pm): | |
ionic radius (pm): | (+3) 54 |
1st ion potential (eV): | 5.99 |
Electron Configuration | |
1s2 2s2 2p6 3s2 3p1 | |
Electrons Per Shell | |
2, 8, 3 | |
Electronegativity: | 1.61 |
Electron Affinity: | 0.44 |
Oxidation states: | 3 |
Magnetism: | Paramagnetic |
Crystal structure: | Face centered cubic |
Aluminum (British usage Aluminium) is a Poor Metal in group 13. It has a Face centered cubic crystalline structure. This element has a stable isotope of 27
"Aluminum is a comparatively new industrial metal that has been produced in commercial quantities for just over 100 years. It weighs about one-third as much as steel or copper; is malleable, ductile, and easily machined and cast; and has excellent corrosion resistance and durability. Measured either in quantity or value, aluminum's use exceeds that of any other metal except iron, and it is important in virtually all segments of the world economy. Some of the many uses for aluminum are in transportation (automobiles, airplanes, trucks, railcars, marine vessels, etc.), packaging (cans, foil, etc.), construction (windows, doors, siding, etc), consumer durables (appliances, cooking utensils, etc.), electrical transmission lines, machinery, and many other applications."- USGS Aluminum Statistics and Information. [1]
Lunar use
Since there is no evidence of any substantial deposits of copper ore on Luna, substitutes for electrical wiring will be required. Aluminum makes an excellent substitute, being currently used for this purpose in many terrestrial applications. Aluminum is also useful in construction of mirrors for solar collection and reflective coatings for spacecraft, as aluminum is an excellent reflector of both visible and infrared light. Aluminum's high thermal conductivity and corrosion resistance make it useful for the production of heat sinks and heat exchangers, and its high strength and low density make it useful for the production of lightweight components for spacecraft, satellites, and lunar structures.
One difficulty in using aluminum on the Moon is its large increase in length with increasing temperature. The large range of day/night temperatures make this particularly important. Aluminum components in a lunar environment would need to be thermally protected to avoid these effects.[2] Another difficulty in the use of aluminum is that aluminum alloys lack a well defined fatigue limit, meaning they will eventually fail from even small stresses given sufficient time. It is for this reason that titanium is generally favored over aluminum for lightweight load bearing components in terrestrial applications, aluminum being reserved for other, less stressed components.
Aluminum can also be used in locally produced rocket fuel. See In-Situ Propellant Production.
Lunar Aluminum Production
Main article: Lunar Aluminum Production
Lunar Aluminum Production could use an adaptation of the Hall-Héroult or Deville process. Alternatives include ion-sputtering, carbothermal reduction, or an adaptation of the FFC Cambridge Process.
See Also
References
This article is an automatically generated stub. As such it may contain serious errors.
You can help Lunarpedia by expanding or correcting it. |